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ABSTRACT 

Structural acoustics often utilizes Fourier 
transformation to either reveal a phenomenon that is more 
directly recognized in one domain than in its Fourier 
conjugate domain or to employ complementarity in order to 
decipher a phenomenon. In this report, a novel computational 
technique is introduced. This technique advantageously 
performs this transformation in situations in which specific 
spatial scales govern aliased factors in the integrand of a 
Fourier transformation. The technique can factorially save 
computational steps over corresponding computations that 
employ discrete Fourier transform procedures. 

I.   INTRODUCTION 

Structural acoustics deals largely with the description of wave propagations in 

structures and in the fluids that are in contact with their internal and external surfaces. 

Models of the structure are constructed so that they facilitate the derivation of these 

descriptions. A description may be more readily derived when the model is idealized and 

adapted to accommodate a given Fourier domain. Yet a phenomenon in the description 

may be, in some cases, more advantageously interpreted in a domain that is a Fourier 

conjugate to that in which the description is originally derived. Moreover, a comple- 

mentary description of this kind is itself of considerable benefit in the interpretation of a 

phenomenon in the description. In this sense, one is often called upon to perform Fourier 

transformations in structural acoustics. The purpose of this report is to propose a novel 

computational technique to accomplish a certain class of Fourier transformations. It 

transpires that a number of phenomena in structural acoustics are featured in this class; in 

particular, those phenomena that are related to aliasing and to pass and stop bands in 

regularly ribbed structures [1-11]. 



A typical Fourier transform in this report is expressed 

f(x,co)  = (In)'112  J   dk exp(-ixlc) F(k,co) , (la) 

F(Jc,co)  = (2KY
111

   J   dx exp(ixk) f(x,co) , (lb) 

where the k -domain and the x -domain are Fourier conjugate domains; (k) and (x) are 

a Fourier variable pair; and (co) is a silent variable in these transformations. For these 

equations to be valid, F(k, co) and f(x, co) need to be well behaved functions of (k) and 

(x), respectively, so that convergence can be guaranteed. In this report the concern is 

mainly focused on Eq. (la). Using the self-aliased wavenumber operator Sb(k), Eq. (la) 

may be cast in the form 

f(x,co)  = (2nr)~1/2   J       dk Sb(k) {exp(-ixk)F(k,co)} ; 

*!   = (2a)/(b) . (2a) 

The self-aliased wavenumber operator Sb(k) is defined 

Sb(k) {N(k,o))} = £ N(k + Kq,co) = M(k,co) = M(k + Kj,co) ; 

Sb(k) {K(k,co) G(k,co)}  =  K(k,a>) Sb(k) {G(k,co)} ,   if 

K(k,co) =  K(k + Kj,co) , (3) 



where (b) is an appropriately selected spatial scale factor, 

Kq  = qKx ; Kj  = JKX ; KX  = (Inlb) , (4) 

and N(k,co), K(k,(o), and G(k,a>) are arbitrary but well behaved functions of the 

wavenumber (k). The quantities K(k,co), by definition, and M(k,a>), by construction, 

are aliased; i.e., once K(k,co) and M(k,(o) are specified in a segment that spans the 

width (K^) in the &-domain, they are specified, by repetitive extrapolation, throughout 

that domain. In particular, if K(k, co) and M(k,coi) are known within the segment 

0 < k < Klt they are known throughout the k -domain. Equation (la) is transformed 

into Eq. (2a) by constructing an integrand that is "aliased in (k) with respect to (KX)" 

and, therefore, the integral over a single segment (jq) wide suffices; all the information 

that is in {exp(-ixk) F(k,co)} over the entire k-domain is concentrated in 

Sb(k) {exp(-ixk) F(k,co)} over the segment 0 < k < KX of that domain. After the 

aliased integrand is sampled in this segment, the integration over this segment may be 

evaluated adaptively or otherwise. Alternatively, the segmental span (K1 ) may be chosen 

to be (K[) which is small enough so that a "mean value theorem" can be relied upon to 

evaluate the integral in Eq. (2a). At this stage, the alternative procedure is selected for 

the evaluation of Eq. (2a); namely 

f(x,co)  = (2KY
111
 (K[) Sb,(k0) {exp(-ixk0) F(k0,co)} ; 

K[   = (2TT/b') ; k0   = ((XKi) ; 

Sb,(k) {N(k,co)]  =  ^(N + K'CO);        K'=  QK[ , (2b) 



where (a) is a positive constant less than unity, [cf. Eqs. (3) and (4).] To define "small 

enough," the details in the integrand in Eq. (la) may be conveniently typified by a 

wavenumber {ky) and a loss factor (77 y). The wavenumber (ky) locates the position of 

the (y)th detail and (r]y) estimates the extent of that detail in the k -domain. In order to 

capture all relevant details in this integrand, when Eq. (la) is converted into Eq. (2b), it is 

necessary to impose 

K[  « (T]yk7) , (5) 

for all relevant /'s. Indeed, under the condition stated in Eq. (5), and after carrying out 

the operation dictated by Sb,{k0) in Eq. (2b), (k0) can be safely set equal to zero by 

choosing (a) to be zero. In this limit, Eq. (2b) becomes a Fourier series expansion for 

f(x, co). Clearly, the infinite summation that is dictated in Eq. (2b) by the operator 

Sb>(k0) cannot be met in practice; the summation needs to be truncated. To ensure that 

the truncated terms can be discarded, a maximum wavenumber {kM) is defined so that 

the convergence of F(k, co) is substantially completed when this wavenumber is reached. 

A number (/') is then defined and it is required that 

f(x,co) ~(2;r)~1/2 {K[) s£(k0) {exp(-ixk0) F(k0,co)} ; 

kM   = (J'K[) , (2c) 

constitutes an adequate approximation to Eq. (2b), where 

SJ
v(k) {N(k,0))}    ^    N(k + K'j,co); K)   = (jK[) . (6) 

j = -r 



[cf. Eqs. (2b) and (3).] How can an adequate approximation be defined in the context of 

Eq. (2c)? For this purpose one needs to specify the expected "overall spatial span" (xM) 

and the "spatial sampling span" (x[) for the Fourier transform f(x,co). The specification 

of these spatial parameters defines a number (J'x) given by 

*M   = (J'x x[) ■ (7a) 

The uncertainty principle and sampling theory relate {kM, K{) to [xM, x[) in the form 

(x[ku)  = (XMK[)  > In; J'x   =  J'  > In {X[K{Y
1
   .        (7b) 

Summarizing Eqs. (2) through (7) yields 

f(x,co) ^(2nTU2 (K[) S%(k0) {exp(-ixk0) F(k0,co)} ; 

K   = (ccKi) , (8) 

and the approximation is adequate, provided 

(T/y)"1   « (ky/K{)  «  J'; J'  = (kMlK{)  = (xMlx{) ,     (9) 

is satisfied, where (ky) and {7]y) define all details in F(k, co) in the k -domain that need 

to be captured to render f(x,co) a reliable Fourier transform. Usually (x{ K{) is selected 

as small compared with unity and (a) is selected as zero. Choosing the equality sign in 

Eq. (7b) and, as such, substituting it in Eq. (8), the resulting equation can be readily 

manipulated to conform with the discrete Fourier transform.   The discrete Fourier 



transform is the basis for the formulation of the Fast Fourier Transform (FFT) 

computational procedures [12]. In this report, however, a different computational path is 

selected. 

II.   FORMALISM OF A DOUBLE-SUM COMPUTATIONAL PROCEDURE 

The approximation that underlies Eq. (8) requires Eq. (9) to be satisfied. The 

latter equation implies that some knowledge of F(k, co) is on hand in that the various 

vectors {&7,T|Y} that typify details in this function can be reasonably estimated. These 

estimations are then used to determine the vector {K{,J'} that needs to be imposed on 

Eq. (8). This vector, in turn, determines the "wavenumber sampling span" (K{) and the 

"overall wavenumber span" kM = (J'K[). The first determines the separation between 

adjacent sampling positions and the second ensures convergence. Situations may arise in 

which the wavenumber sampling span is selected, for some reason, to be (iq) instead of 

(K() and (KX) > (K{). Were this selection of (Kt) for (KJ) to be made, what 

modification needs to be instituted in Eq. (la) to bring in a finite summation, while 

ensuring that an adequate approximation is installed? Indeed, the approximation is 

required to match the accuracy that is enjoyed by Eq. (8) when this equation is covered 

by the imposition of Eq. (9). 

Using the self-aliased operator Sb(k), Eq. (la) may be recast in the form 

f(x,co)  = (27r)~1/2 dk Sb(k) {exp(-ixk) K(k,co) G(k,co)} ; 
J    o 

KX  = {Inlb) , (10a) 



where, for the sake of flexibility, F(k, co) is expressed in the factorial form 

F(k,co) = K(k,co) G(k,co) . (11) 

[cf. Eq. (2a).] Ensuring the convergence of F(fc,cü) by an overall wavenumber span 

kM = /Kj, the infinite summation implied by Sb(k) is then replaced by a finite 

summation; namely, Eq. (10a) is approximated in the form 

f{x,m) ~(27T)-1/2 dk ${(k) {exp(-ixk) K(k,co) G(k,co)} ; 
"     o 

kM  = (JKO , (10b) 

where 

SJ
b(k) {N(k,co)}  =     2    N(k + Kj,co); Kj   =  JK, ; 

KX  = (2Klb) , (12a) 

[cf. Eqs. (2c) and (6).]  With the help of Eq. (7) it emerges that the approximation in 

Eq. (10b) matches that in Eq. (2c) provided the equalities and the inequality 

xl   =   xl  '■> XM   =   J xi  '■> kM   = (J Kx)   = (JKI)', 

J  > iTcixpJ-1 , (13) 

7 



are maintained. Since the new wavenumber sampling span (iq) is larger than the old 

wavenumber sampling span (K{), the integral cannot be evaluated by a single segment in 

the manner of Eq. (2c). Each segment in the summation needs to be spanned more finely. 

In this vein, the integral is carried out over (1 + R) regular intervals, notwithstanding that 

an adaptive procedure may, under certain circumstances, be preferred. Executing the 

integral in the manner just specified, one derives from Eq. (10b) the Fourier transform in 

the form 

f(x,co) ~(2K)-
111
 (l + R)-1 Oq)   JT   SJ

b(kr) {exp(-ixkr) K{kr,co) G(kr,co)} ; 
r = o 

kM   = (/*!) ; kr   = (l + R)-1   Kr ; Kr   = (r^) ; KX   = (InIb) . 

(14) 

The "effective" wavenumber sampling span in Eq. (14) is then given by (1 + Ä)-1 KV 

Using Eqs. (9) and (12), the approximation in Eq. (14) adequately matches that of Eq. (8) 

provided 

{ri^l + R)}'1   « {kylKj  «  J ; J(l + R) ~ /' , (15) 

notwithstanding that the number of terms in the double-sum in Eq. (14) is 

{(2/ + 1) + (1 + i?)} versus (27'+ 1) in the single-sum in Eq. (8). However, the number 

of computational steps is {(2/ + 1) (l + R)} in Eq. (14) versus (2/' + l) in Eq. (8), which 

is in agreement with the second of Eq. (15) when / and /' » 1. There is then no 

factorial saving in computational steps between Eq. (14), as it stands, and Eq. (8); using 



one or the other equation is merely a matter of convenience. The crux of the report is 

revealed when one or the other factors composing F(k,(ü), K{k, co), etc. is aliased in (lc) 

with respect to (iq), and (iq) matches the (KJ in Eq. (10a). Under this condition, a 

factorial saving of computational steps may be accrued by an appropriate manipulation of 

the integrand. A few examples in this regard are considered next. 

m.   INTEGRAND COMPOSED OF ALIASED FACTORS 

The expression depicted in Eq. (11) is specialized in that the factor K{k,(o) is 

assumed to be aliased in (k) with respect to (iq). [cf. Eq. (3).] Using the properties of 

the self-aliased operator Sb(k) as defined in Eq. (3), the integrand in Eq. (10a) can be 

equivalently expressed in form 

Sb(k) {exp{-ixk) K(k,co) G{k,(o)} = K(k,a) Sb(k) {exp(-ixk) G(k,co)} ,   if 

K(k,co) =  K(k + Kj,co) . (16a) 

In terms of the approximation stated in Eq. (14), the "R-summand" equivalence assumes 

the form 

SJ
b(kr) {exp(-ixkr) K(kr,co) G(kr,co)}  =»  K(kr,co) S^(kr) {exp(-ixkr) G(kr,co)} ; 

*MI   =  J\K\ > (16b) 



where km is the overall wavenumber span with respect to the convergence of the 
j 

operand under Sb (kr) in this equation and in general 

Jß 
SJ

b
ß(kr) {N(kr,cö)}  =    £   N(kr+Kj,co) . (12b) 

h-Jß 

It is noted that if the right side of Eq. (16b) is used in Eq. (14) instead of the left, a 

factorial saving equal to the smaller of (2Jl +1) and (2/ +1) of computational steps is 

accrued. Usually, however, Jl = J and, therefore, the two factors are equal. 

Moreover, if the aliasing in K(k, co) can be cast in the form 

K{k,co)  =  Sb(k) lKA(k,co) KB(k,co)} , (17a) 

then in terms of the approximation stated in Eq.(14), the R-summand equivalence 

becomes 

Si(kr) {exp(-ixkr) K(kr,co) G(krJco)} 

=>  SJ
b
2   {KA(kr,co) KB(kr,(0)}   SJ

bHkr) {exp(-ixkr) G(kr,co)} ; 

*M2   = (J2K1) , (17b) 

where kM2 is the overall wavenumber span with respect to the convergence of the 

operand [KA(k,co) KB(k,co)} under Sb
2(k). It is noted that the factorial saving of 

computational steps pertaining to Eq. (17b) remains unchanged from that derived from 

Eq. (16b). If, in addition to the form of K(k, co), as stated in Eq. (17a), it is assumed that 

10 



KA(k,co) is aliased in (k) with respect to (lq), then the factor K(k,co) can be factorized 

further in the form 

K(k,a» =  KA(k,co) Sb(k) {KB(k,co)} ,   if 

KA(k,co) = KA(k + Kj,o)) . (18a) 

In terms of the approximation stated in Eq. (14), the R-summand equivalence assumes 

the additional factorization, over Eq. (17b), of the form 

SJ
b(kr) {exp(-ixkr) K(kr,co) G(kr,co)} 

=>  KA(kr,co) SJ
b\kr) KB(kr,0))}   SJ

b\kr) {exp(-ixkr) G(kr,co)} ; 

km  = (JjcJ , (18b) 

where kM3 is the overall wavenumber span with respect to the convergence of the 

quantity KB(k,co) in this equation. It is noted that if in Eq. (14) the right side of 

Eq. (18b) is used instead of that of Eq. (16b), a factorial saving equal to the smaller of 

(2/2 +1) and (2/3 +1) of computational steps is accrued. Usually, however, J» = J 

and, therefore, the two factors are equal. Under this equality, it is noted that if the right 

side of Eq. (18b) is used in Eq. (14) instead of the left, a factorial saving of (2/ +1)2 of 

computational steps is accrued. In the event that the aliasing in the factor KA(k,co), as 

stated in Eq. (18a), stems from its functional dependence on an aliased quantity; e.g. 

KA(k,co) = KA[Sb(k) {KM(k,co)}] , (19a) 

11 



the approximation stated in Eq. (14) supports the R-summand equivalence of the form 

SJ
b(kr) {exp(-ixkr) K(kr,a) G(kr,co)} 

=>   KJ
A*(kr,co) SJ

b\kr) {KB(kr,co)}   SJ
bHkr) (exp(-ixkr) G(kr,co)} ; 

KJ/(K,0)) = KA[SJ
bHK) [K^ik^co)}] ; kM4  = (J^) , (19b) 

where kM4 is the overall wavenumber span with respect to the convergence of the 

quantity K^ik,^) in this equation. It is noted that there is no factorial saving of 

computational steps between the use of Eqs. (18b) and (19b). If further factorization 

exists, either in KA(k,co), in KB(k,co) or in both, in the format just prescribed, one may 

gain more and more factorial savings. For the purpose of this report, however, the 

factorization and dependence considered in Eqs. (18a) and (19a) suffice. 

A special case of Eq. (11) is that in which, in addition to the aliasing of K{k,(o) in 

(k) with respect to (iq), the function G(k,co), in this equation, is independent of the 

wavenumber (k); namely 

F{k,co)  =  G0((o) K(k,co) ; K(k,0))  =  K(k + Kj,co) . (20) 

Substituting Eq. (20) in Eq. (10a) derives 

f{x,co) = sb(x) {8(x) fs(x,co)} ; 

fs(x,co)  = [G^co)/^] (27T)-1/2   f   '   dk exp(-ixk)K{k,(o) , (21) 

12 



where sb(x) is a self-aliased spatial (x) operator with respect to the fundamental 

separation distance (b); b = (2KIK{). This operator is defined 

sb{x) {n{x,(o)}  =  2 n(x + X:,(o) ; xf   = (jb) ;        x0   =  0 .(22) 
i 

[cf. Eq. (3).] Executing the integral in Eq. (21) in a manner analogous to that resulting in 

Eq. (14), one obtains 

R 

fs(x,co)  = (In)-112 [G0(co)/(1 + R)]   £   {exp(-ixkr) K(kr,co)} ,      (23) 
r = o 

and the evaluation of fs(x,co) is considered, in view of Eq. (21), to be synonymous with 

the evaluation of f(x,co), notwithstanding the acknowledgment that, unlike f(x,co), the 

evaluation of fs(x,co) is meaningful only for values of x = xf, Xj = (jb). In this 

view, the recognition of the aliasing in K(k,(o), as stated in Eq. (20), is worth a factorial 

saving of (2/ +1) of computational steps. This is similar to the factorial saving that is 

accrued in Eq. (16b), utilizing the same recognition. Indeed, the factorization of K(k, co), 

as depicted in Eqs. (16) - (19) and beyond, are just as beneficial with respect to Eq. (23) 

as they are with respect to Eq. (14). 

13 
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